skip to main content


Search for: All records

Creators/Authors contains: "Lyu, Jianwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    By combining the James Webb Space Telescope (JWST)/NIRCam JADES and CEERS extragalactic data sets, we have uncovered a sample of 21 T and Y brown dwarf candidates at best-fit distances between 0.1 and 4.2 kpc. These sources were selected by targeting the blue 1–2.5μm colors and red 3–4.5μm colors that arise from molecular absorption in the atmospheres ofTeff< 1300 K brown dwarfs. We fit these sources using multiple models of substellar atmospheres and present the resulting fluxes, sizes, effective temperatures, and other derived properties for the sample. If confirmed, these fits place the majority of the sources in the Milky Way thick disk and halo. We observe proper motions for seven of the candidate brown dwarfs, with directions in agreement with the plane of our Galaxy, providing evidence that they are not extragalactic in nature. We demonstrate how the colors of these sources differ from selected high-redshift galaxies, and explore the selection of these sources in planned large-area JWST NIRCam surveys. Deep imaging with JWST/NIRCam presents an an excellent opportunity for finding and understanding these ultracool dwarfs at kiloparsec distances.

     
    more » « less
  2. ABSTRACT

    We present band 6 ALMA observations of a heavily obscured radio-loud (L1.4 GHz = 1025.4 W Hz−1) active galactic nucleus (AGN) candidate at zphot = 6.83 ± 0.06 found in the 1.5 deg2 COSMOS field. The ALMA data reveal detections of exceptionally strong [C ii]158 $\mu$m (z[C ii] = 6.8532) and underlying dust continuum emission from this object (COS-87259), where the [C ii] line luminosity, line width, and 158 $\mu$m continuum luminosity are comparable to those seen from z ∼ 7 sub-mm galaxies and quasar hosts. The 158 $\mu$m continuum detection suggests a total infrared luminosity of $9\times 10^{12}\, \mathrm{ L}_\odot$ with corresponding very large obscured star formation rate (1300 M⊙ yr−1) and dust mass ($2\times 10^9\, \mathrm{ M}_\odot$). The strong break seen between the VIRCam and IRAC photometry perhaps suggests that COS-87259 is an extremely massive reionization-era galaxy with $M_\ast \approx 1.7\times 10^{11}\, \mathrm{ M}_\odot$. Moreover, the MIPS, PACS, and SPIRE detections imply that this object harbours an AGN that is heavily obscured ($\tau _{_{\mathrm{9.7\,\mu m}}}=2.3$) with a bolometric luminosity of approximately $5\times 10^{13}\, \mathrm{ L}_\odot$. Such a very high AGN luminosity suggests that this object is powered by an ≈1.6 × 10$^9\, \mathrm{ M}_\odot$ black hole if accreting near the Eddington limit, and is effectively a highly obscured version of an extremely ultraviolet (UV)-luminous (M1450 ≈ −27.3) z ∼ 7 quasar. Notably, these z ∼ 7 quasars are an exceedingly rare population (∼0.001 deg−2), while COS-87259 was identified over a relatively small field. Future very wide area surveys with e.g. Roman and Euclid have the potential to identify many more extremely red yet UV-bright z ≳ 7 objects similar to COS-87259, providing richer insight into the occurrence of intense obscured star formation and supermassive black hole growth among this population.

     
    more » « less
  3. Abstract

    We present a catalog of 717 candidate galaxies atz> 8 selected from 125 square arcmin of NIRCam imaging as part of the JWST Advanced Deep Extragalactic Survey (JADES). We combine the full JADES imaging data set with data from the JWST Extragalactic Medium Survey and First Reionization Epoch Spectroscopic COmplete Survey (FRESCO) along with extremely deep existing observations from Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) for a final filter set that includes 15 JWST/NIRCam filters and five HST/ACS filters. The high-redshift galaxy candidates were selected from their estimated photometric redshifts calculated using a template-fitting approach, followed by visual inspection from seven independent reviewers. We explore these candidates in detail, highlighting interesting resolved or extended sources, sources with very red long-wavelength slopes, and our highest-redshift candidates, which extend tozphot∼ 18. Over 93% of the sources are newly identified from our deep JADES imaging, including 31 new galaxy candidates atzphot> 12. We also investigate potential contamination by stellar objects, and do not find strong evidence from spectral energy distribution fitting that these faint high-redshift galaxy candidates are low-mass stars. Using 42 sources in our sample with measured spectroscopic redshifts from NIRSpec and FRESCO, we find excellent agreement to our photometric redshift estimates, with no catastrophic outliers and an average difference of 〈Δz=zphotzspec〉 = 0.26. These sources comprise one of the most robust samples for probing the early buildup of galaxies within the first few hundred million years of the Universe’s history.

     
    more » « less
  4. ABSTRACT

    We report the identification of radio (0.144–3 GHz) and mid-, far-infrared, and sub-mm (24–850μm) emission at the position of one of 41 UV-bright ($\mathrm{M_{\mathrm{UV}}}^{ }\lesssim -21.25$) z ≃ 6.6–6.9 Lyman-break galaxy candidates in the 1.5 deg2 COSMOS field. This source, COS-87259, exhibits a sharp flux discontinuity (factor >3) between two narrow/intermediate bands at 9450 and 9700 Å and is undetected in all nine bands blueward of 9600 Å, as expected from a Lyman alpha break at z ≃ 6.8. The full multiwavelength (X-ray through radio) data of COS-87529 can be self-consistently explained by a very massive (M* = 1010.8 M⊙) and extremely red (rest-UV slope β = −0.59) z ≃ 6.8 galaxy with hyperluminous infrared emission (LIR = 1013.6 L⊙) powered by both an intense burst of highly obscured star formation (SFR ≈ 1800 M⊙ yr−1) and an obscured ($\tau _{_{\mathrm{9.7\mu m}}} = 7.7\pm 2.5$) radio-loud (L1.4 GHz ≈ 1025.4 W Hz−1) active galactic nucleus (AGN). The radio emission is compact (1.04 ± 0.12 arcsec) and exhibits an ultra-steep spectrum between 1.32 and 3 GHz ($\alpha =-1.57^{+0.22}_{-0.21}$) that flattens at lower frequencies ($\alpha = -0.86^{+0.22}_{-0.16}$ between 0.144 and 1.32 GHz), consistent with known z > 4 radio galaxies. We also demonstrate that COS-87259 may reside in a significant (11×) galaxy overdensity, as common for systems hosting radio-loud AGN. While we find that low-redshift solutions to the optical + near-infrared data are not preferred, a spectroscopic redshift will ultimately be required to establish the true nature of COS-87259 beyond any doubt. If confirmed to lie at z ≃ 6.8, the properties of COS-87259 would be consistent with a picture wherein AGN and highly obscured star formation activity are fairly common among very massive (M* > 1010 M⊙) reionization-era galaxies.

     
    more » « less
  5. The detection of starlight from the host galaxies of quasars during the reionization epoch (z > 6) has been elusive, even with deep HST observations1,2. The current highest redshift quasar host detected3, at z = 4.5, required the magnifying effect of a foreground lensing galaxy. Low-luminosity quasars4,5,6 from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)7 mitigate the challenge of detecting their underlying, previously-undetected host galaxies. Here we report rest-frame optical images and spectroscopy of two HSC-SSP quasars at z > 6 with JWST. Using NIRCam imaging at 3.6μm and 1.5μm and subtracting the light from the unresolved quasars, we find that the host galaxies are massive (stellar masses of 13 × and 3.4 × 1010 M⊙, respectively), compact, and disk-like. NIRSpec medium-resolution spectroscopy shows stellar absorption lines in the more massive quasar, confirming the detection of the host. Velocity-broadened gas in the vicinity of these quasars enables measurements of their black hole masses (1.4 × 109 and 2.0 × 108 M⊙, respectively). Their location in the black hole mass - stellar mass plane is consistent with the distribution at low redshift, suggesting that the relation between black holes and their host galaxies was already in place less than a billion years after the Big Bang. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  6. Abstract We present results from Atacama Large Millimeter/submillimeter Array (ALMA) 1.2 mm continuum observations of a sample of 27 star-forming galaxies at z = 2.1–2.5 from the MOSFIRE Deep Evolution Field survey with metallicity and star formation rate measurements from optical emission lines. Using stacks of Spitzer, Herschel, and ALMA photometry (rest frame ∼8–400 μ m), we examine the infrared (IR) spectral energy distributions (SED) of z ∼ 2.3 subsolar-metallicity (∼0.5 Z ⊙ ) luminous infrared galaxies (LIRGs). We find that the data agree well with an average template of higher-luminosity local low-metallicity dwarf galaxies (reduced χ 2 = 1.8). When compared with the commonly used templates for solar-metallicity local galaxies or high-redshift LIRGs and ultraluminous IR galaxies, even in the most favorable case (with reduced χ 2 = 2.8), the templates are rejected at >98% confidence. The broader and hotter IR SED of both the local dwarfs and high-redshift subsolar-metallicity galaxies may result from different grain properties or a harder/more intense ionizing radiation field that increases the dust temperature. The obscured star formation rate (SFR) indicated by the far-IR emission of the subsolar-metallicity galaxies is only ∼60% of the total SFR, considerably lower than that of the local LIRGs with ∼96%–97% obscured fractions. Due to the evolving IR SED shape, the local LIRG templates fit to mid-IR data overestimate the Rayleigh–Jeans tail measurements by a factor of 2–20. These templates underestimate IR luminosities if fit to the observed ALMA fluxes by >0.4 dex. At a given stellar mass or metallicity, dust masses at z ∼ 2.3 are an order of magnitude higher than z ∼ 0. Given the predicted molecular gas fractions, the observed z ∼ 2.3 dust-to-stellar mass ratios suggest lower dust-to-molecular gas masses than in local galaxies with similar metallicities. 
    more » « less